If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+20x-1=0
a = -16; b = 20; c = -1;
Δ = b2-4ac
Δ = 202-4·(-16)·(-1)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{21}}{2*-16}=\frac{-20-4\sqrt{21}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{21}}{2*-16}=\frac{-20+4\sqrt{21}}{-32} $
| 6x^+11x+5=0 | | 2x-4=-0.5x+1 | | 8x-33=7x-13 | | 4(3x-2)/8=24 | | 5-3*x=19 | | 1/3(9x+3)=3x+1= | | 4w+6+3=17 | | a+-21=38 | | 5+3x+x+x=x+x+x+9 | | y=22+22 | | -6k-2k=16 | | k+-23=100 | | (x+1)(4x+8)=(x+1)(4x+8) | | 5y=1+4y | | 2x-(9-5x)-3=x+2(3x-11) | | 5x+3+6x+15+x=180 | | 4(5x+6)=31 | | 5(5x+5)=30 | | 4(3+5d)-4=3+2(d-2) | | 180=48+11x-5+9x-3 | | -IxI=x-2 | | 180=48+11x-5 | | -5-3(8v-4)=-25-8v | | 18+12x=59 | | X+(-3x+1)=7 | | 9x-2=3x-6 | | 4(2x+5)=54 | | 6x+2x+8=40 | | 3x+3-2x+7=X+15 | | 7x5=80 | | -8=t9 | | 18=4(1-2k |